Trichlorosilane and 4-Chlorophenylbut-1-enes.

By R. W. Bott, C. Eaborn, and K. Leyshon.

Trichlorosilane reacts with $4-m$ - and $4-p$-chlorophenylbut-1-ene in the presence of chloroplatinic acid to give benzylsilicon compounds, $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{SiCl}_{3}\right) \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{3}$, in addition to the expected straight-chain compounds $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{SiCl}_{3}$.

From the addition of trichlorosilane to either 4- m - or $4-p$-chlorophenylbut-1-ene in presence of chloroplatinic acid, we obtained two products of formula $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \cdot \mathrm{SiCl}_{3}$. In each case, the major, higher-boiling product was shown to be the expected straight-chain compound, m - or $p-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{SiCl}_{3}$, and the minor product to be a benzyl-silicon
 ever, we obtained only the straight-chain product.

For ease of presentation the assigned structures will be assumed in the listing of evidence for the assignments, which was as follows:
(a) Table 1 lists the main features (maxima wavelengths, $\lambda_{\text {max }}$, and the associated extinction coefficients, $\varepsilon_{\max }$.) of the ultraviolet spectra above $245 \mathrm{~m} \mu$ for the $\mathrm{Me}_{3} \mathrm{Si}^{\circ} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \cdot \mathrm{SiMe}_{3}$ compounds derived from the products of the additions, and of $\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{SiMe}_{3}$ compounds, in which $n=2$ or 3 , made by unambiguous routes.

Table 1.
Ultraviolet spectra in methanol.
(i) $\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{SiMe}_{3}$ compounds

$p-\mathrm{Me}_{3} \mathrm{Si}$	R	$n=2$		$n=3$		$n=4$	
		$\lambda_{\text {max. }}(\AA)$	$\varepsilon_{\text {max }}$.	$\lambda_{\text {max. }}(\AA)$	$\varepsilon_{\text {max }}$.	$\lambda_{\text {max }}(\AA)$	$\varepsilon_{\text {max }}$.
		2580	230	2575	220	2575	220
		2635	270	2630	260	2630	260
		2695	195	2690	190	2690	190
\boldsymbol{m} - $\mathrm{Me}_{3} \mathrm{Si}$		2675	410	2675	390	2675	390
		2750	350	2745	335	2745	340
$o-\mathrm{Me}_{3} \mathrm{Si}$		2685	475	2680	425	2680	410
		2755	410	2750	370	2750	360

(ii) $\mathrm{R} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CHY} \cdot \mathrm{SiMe}_{3}$ compounds

$p-\mathrm{Me}_{3} \mathrm{Si}$	R	$\mathrm{Y}=\mathrm{H}$		$\mathrm{Y}=\mathrm{Pr}^{\mathrm{n}}$	
		$\overbrace{\text { max. }}(\AA)$	$\varepsilon_{\text {max }}$.	$\lambda_{\text {max. }}(\AA)$	$\varepsilon_{\text {max }}$
		2620	540	2620	490
		2685	565	2685	470
$m-\mathrm{Me}_{3} \mathrm{Si}$		2775	325	-	-
	(2795)*	(560) *	(2795) *	(465
		(2660) *	(475) *	(2660)*	(425)
		2735	685	2735	580
$o-\mathrm{Me}_{3} \mathrm{Si}$		2810	600	2810	480
	(2650) *	(725) *	-	-
		2750	1010	-	-
H		2815	875	-	-
		2615	355	2610	365
		2675	440	2680	420
		2745	355	2750	310

The spectra of the (assumed) 0 -, m-, and $p-\mathrm{Me}_{3} \mathrm{Si}^{\cdot} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{SiMe}_{3}$ compounds are seen to be closely similar to those of the corresponding $o-$, m-, and $p-\mathrm{Me}_{3} \mathrm{Si}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{SiMe}_{3}$
${ }^{1}$ Part XXVI, Eaborn, Jaura, and Walton, J. 1964, 1198.
compounds with $n=2$ or 3 . The spectra of the (assumed) m - and
$p-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}_{3}$ compounds àre different [which those of the corresponding isomeric $\mathrm{Me}_{3} \mathrm{Si}^{\circ} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \cdot \mathrm{CH}_{3}$ compounds would not be], and closely resemble those of the appropriate $\mathrm{Me}_{3} \mathrm{Si}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \cdot \mathrm{SiMe}_{3}$ compounds.
(b) The proton magnetic resonance spectra of the m - and $p-\mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \cdot \mathrm{SiMe}_{3}$ derivatives of the addition products were recorded, as were, for comparison, those of the compounds o - and $p-\mathrm{Me}_{3} \mathrm{Si}^{\circ} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}_{2} \cdot \mathrm{SiMe}_{3}$ and o - and $p-\mathrm{Cl}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{SiMe}_{3}$. The (assumed) straight-chain products m - and $p-\mathrm{Cl}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{SiMe}_{3}$ have a triplet at $\tau=7 \cdot 3$ and 7.5 p.p.m., respectively, a triplet at $\tau=9.5$ and a complex resonance at $8 \cdot 2-9 \cdot 1$ p.p.m., in addition to peaks attributable to the aromatic protons and the protons of the trimethylsilyl groups. The triplet in the region of $\tau=7.4$ p.p.m., can be assigned to the methylene group adjacent to the aromatic ring. (The $\mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{SiMe}_{3}$ compounds have a quintuplet in this region; a triplet was expected, but it seems there is restricted rotation about the $\mathrm{CH}_{2}-\mathrm{CH}_{2}$ bond.) The triplet at $\tau=9.5$ p.p.m. can be assigned to the methylene group adjacent to the silicon atom (the $\mathrm{Ar} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ compounds have a quintuplet in this region), and the resonance at $\tau=8 \cdot 2-9 \cdot 1$ p.p.m. to the two remaining methylene groups.

The (assumed) m - and $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \cdot \mathrm{Pr}^{\mathrm{n}}$ compounds showed no resonance in the $\tau=7 \cdot 4$ p.p.m. region, in which the isomeric $\mathrm{ClC}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \cdot \mathrm{CH}_{3}$ compounds should show a triplet.
(c) The strongest support for the assignment of structures came from measurements of the rates of cleavage of the derived m - and $p-\mathrm{Me}_{3} \mathrm{Si}^{2} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \cdot \mathrm{SiMe}_{3}$ compounds by aqueous methanolic perchloric acid (cf. ref. 2). The rates, along with those for m - and $p-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{SiMe}_{3}$ compounds where $n=1-3$, and for trimethyl- m - and $-p$-tolylsilane, are shown in Table 2 as values of $k_{\text {rel }}$, the rate relative to that for trimethylphenyl-

Table 2.
Relative rates of cleavage of $\mathrm{RC}_{6} \mathrm{H}_{4} \cdot \mathrm{SiMe}_{3}$ compounds by aqueous methanolic perchloric acid at $50 \cdot 1^{\circ}$.

R	$k_{\text {rel }}$						
$m-\mathrm{CH}_{3}$	$2 \cdot 5$	$m-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{2}$	$3 \cdot 5$	- $-\mathrm{CH}_{3}$	20.5	$p-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{2}$	$27 \cdot 5$
$m-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{CH}_{2}$	6.4	$m-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{3}$	$3 \cdot 7$	$p-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{CH}_{2}$	270	$p-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{3}$	21
$m-\mathrm{Me}_{3} \mathrm{Si}\left(\mathrm{Pr}^{\mathrm{n}}\right) \mathrm{CH}$	$7 \cdot 9$	$m-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{4}$	$3 \cdot 4$	$p-\mathrm{Me}_{3} \mathrm{Si}\left(\mathrm{Pr}^{2}\right) \mathrm{CH}$	260	$p-\mathrm{Me}_{3} \mathrm{Si}\left[\mathrm{CH}_{2}\right]_{4}$	23

silane.* The high reactivity of the branched-chain compounds clearly shows them to have a trimethylsilyl group separated from the ring by only one carbon atom; the reactivities of the isomers m - or $p-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{CH}\left(\mathrm{SiMe}_{3}\right) \cdot \mathrm{CH}_{3}$ structures would be smaller, and very similar to those of the corresponding straight-chain compounds, m - or $p-\mathrm{Me}_{3} \mathrm{Si} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{SiMe}_{3}$ with $n>1$, since the silicon atom has little effect when separated from the ring by more than one carbon atom.

The major product in the reaction of $4-m$ - and $4-p$-chlorophenylbut-1-ene with trichlorosilane is then the expected straight-chain compound, $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot\left[\mathrm{CH}_{2}\right]_{4} \cdot \mathrm{SiCl}_{3}$, while the minor product is the benzyl-silicon compound, $\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CH}\left(\mathrm{SiCl}_{3}\right) \cdot \mathrm{Pr}^{\mathrm{n}}$, the formation of which is reasonable in view of the several reported examples of rearrangements during chloroplatinic acid-catalysed additions of silicon hydrides to olefins. ${ }^{3-5}$ For example, addition of trichloro-, dichloromethyl-, or chlorodimethyl-silane to hept-3-ene in presence of chloroplatinic acid gives n-heptyl-silicon compounds exclusively, and Saam and Speier ${ }^{5}$ have presented evidence that such addition of a silicon hydride to an olefin involves initial

[^0]transfer of a hydride ion to give a carbanion, which can then acquire a $=\mathrm{Si}^{+}$fragment or, in suitable cases, rearrange to a more stable carbanion which then either acquires a $\equiv \mathrm{Si}^{+}$ fragment or loses a hydride ion to form a new olefin; n-heptyl-silicon compounds are formed in this way from hept-3-ene because the primary n-heptyl carbanion is more stable than the initially-formed secondary carbanion. ${ }^{4,5}$ In reactions involving an olefin of the type $\mathrm{Ar} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}=\mathrm{CH}_{2}$ (where n can be 0), the initially-formed primary carbanion, $\mathrm{Ar} \cdot\left(\mathrm{CH}_{2}\right)_{n} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}^{-}$, can be expected to undergo some rearrangement to give the secondary carbanion $\mathrm{Ar} \cdot{ }^{-} \mathrm{CH} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}_{3}$, which is stabilised by resonance involving the aryl group.

Our results contrast with those described by Petrov and his co-workers, ${ }^{6}$ who obtained only the expected straight-chain product from addition of trichlorosilane to the alkenylbenzenes, $\mathrm{Ph} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}=\mathrm{CH}_{2}$, where $n=0-2$; they did obtain branched-chain isomers as minor products in addition of ethyl- and methyl-dichlorosilane to these olefins, but concluded from Raman spectral studies that these isomers had the structure $\mathrm{Ph} \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}\left(\mathrm{SiRCl}_{2}\right) \cdot \mathrm{CH}_{3}$. Our results suggest that their minor products were, in fact, benzyl-silicon compounds, $\mathrm{Ph} \cdot \mathrm{CH}\left(\mathrm{SiCl}_{2} \mathrm{R}\right) \cdot\left[\mathrm{CH}_{2}\right]_{n} \cdot \mathrm{CH}_{3}$.*

We obtained only the straight-chain product from the reaction between trichlorosilane and $4-o$-chlorophenylbut-l-ene, its identity being confirmed by the methods indicated above. There would be some steric hindrance to formation of the benzyl-silicon type of product, but we think there must be an additional factor operating. The proportion of rearrangement during this type of reaction depends greatly on conditions, ${ }^{7}$ and possibly the ortho-olefin would give some rearranged product under only slightly different conditions.

Experimental

3-x-Chlorophenylpropan-1-ol.-Ethylene oxide (100 g ., $2 \cdot 27 \mathrm{~mole}$) in ether (250 ml .), cooled to -30°, was added dropwise to the Grignard reagent formed from p-chlorobenzyl chloride (204 g ., 1.25 mole) and magnesium (36.5 g ., 1.5 g .-atom) in ether (750 ml .), the temperature being kept below 10°. The mixture was allowed to warm to room temperature, and was then treated with an excess of 10% sulphuric acid. The usual working-up, followed by fractionation, gave 3-p-chlorophenylpropan-1-ol ($160 \mathrm{~g} ., 75 \%$), b. p. 113-114 $/ 1.5 \pm 0.2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5404$ (Found: C, 63.6; H, 6.7. $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClO}$ requires C, $63.3 ; \mathrm{H}, 6.5 \%$).

The ortho-isomer, b. p. $104-107^{\circ} / 1.5 \pm 0.2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5420$ (lit., ${ }^{8}$ b. p. $100-101^{\circ} / 2 \mathrm{~mm}$., $n_{\nu}{ }^{25} 1.5390$), was similarly prepared in 70% yield. The meta-isomer, b. p. $106-107^{\circ} / 1 \cdot 0 \pm 0.2$ mm ., $n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 5412$, was prepared analogously in 66% yield from m-chlorobenzyl bromide (Found: C, $63 \cdot 1 ; \mathrm{H}, 6.5 \%$).

1-Bromo-3-x-chlorophenylpropane.-A mixture of 3 - p-chlorophenylpropan-1-ol (155 g., 0.91 mole) and 48% hydrobromic acid ($470 \mathrm{~g} ., 2.80 \mathrm{~mole}$) was refluxed for 6 hr ., then cooled, and diluted with water. Ether extraction, followed by washing of the extract with aqueous sodium hydrogen carbonate and then water, and fractionation, gave impure 1 -bromo- $3-p$-chlorophenylpropane ($172 \mathrm{~g} ., 80 \%$), b. p. $100-103^{\circ} / 1 \cdot 0 \mathrm{~mm}$.

The impure ortho-, b. p. $91-93^{\circ} / 1.0 \pm 0.2 \mathrm{~mm}$., and meta-isomer, b. p. $96-98^{\circ} / 0.7-1.0$ mm ., were similarly prepared.

3-x-Chlorophenyl-1-iodopropane.-A mixture of the impure 1-bromo-3-p-chlorophenylpropane ($89.5 \mathrm{~g} ., 0.38 \mathrm{~mole}$), anhydrous sodium iodide (97 g ., 0.65 mole), and acetone (1.25 l .) was refluxed for 48 hr ., and the acetone was then distilled off. Water was added to the residue, and ether-extraction, followed by washing, drying, and fractionation of the extract gave 3-p-chlorophenyl-1-iodopropane (60 g., 56%), b. p. $95-97^{\circ} / 0 \cdot 2-0.4 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 5919$ (Found: $\mathrm{C}, \mathbf{3 8 . 8} ; \mathrm{H}, \mathbf{3 . 6} . \quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{CII}$ requires $\mathrm{C}, 38.5 ; \mathrm{H}, 3.6 \%$).

The ortho-, b. p. $99-101^{\circ} / 0.4-0.6 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.5935$ (Found: C, $38.4 ; \mathrm{H}, 3.7 \%$) and metaisomer, b. p. $102-105^{\circ} / 0.4-0.6 \mathrm{~mm}$., $n_{\text {D }}{ }^{25} 1.5924$ (Found: C, $38.4 ; \mathrm{H}, 3.5 \%$), were similarly prepared in 72 and 81% yields, respectively.

[^1]3 -x-Chlorophenylpropyltrimethylsilane.-Chlorotrimethylsilane ($32.5 \mathrm{~g} ., 0.30$ mole) was added dropwise to the Grignard reagent from $3-p$-chlorophenyl-l-iodopropane ($56 \mathrm{~g} ., 0.20 \mathrm{~mole}$) and magnesium ($6.1 \mathrm{~g} ., 0.25 \mathrm{~g}$.-atom) in ether (200 ml .), and the mixture was then refluxed for 24 hr . Treatment with dilute acid, followed by the usual working-up and fractionation, gave 3-p-chlorophenylpropyltrimethylsilane (20.1 g ., 44%), b. p. $117-118^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{p}}{ }^{25}$ 1.4978 (Found: $\mathrm{C}, 64 \cdot 0 ; \mathrm{H}, 8.5 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClSi}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 8.4 \%$).

The ortho-, b. p. $112-114^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{p}}{ }^{25} 1.4998$ (Found: C, $63.8 ; \mathrm{H}, 8.1 \%$), and metaisomer, b. p. $114-117^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.4982$ (Found: C, $63 \cdot 6 ; \mathrm{H}, 8.4 \%$), were prepared analogously in 20 and 28% yield, respectively.

Trimethyl-3-x-trimethylsilylphenylpropylsilane.-A mixture of 3 - p-chlorophenylpropyltrimethylsilane ($18.2 \mathrm{~g} ., 0.08$ mole) and chlorotrimethylsilane ($10.8 \mathrm{~g} ., 0.10 \mathrm{~mole}$) was added dropwise to sodium ($4 \cdot 6 \mathrm{~g} ., 0 \cdot 2 \mathrm{~g}$.-atom) in refluxing toluene (75 ml .). The mixture was subsequently refluxed for 5 hr ., then cooled and filtered, and the filtrate was fractionated to give trimethyl-3-p-trimethylsilylphenylpropylsilane ($15.0 \mathrm{~g} ., 71 \%$), b. p. $133^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.4852$ (Found: $\mathrm{C}, 68 \cdot 0 ; \mathrm{H}, 10 \cdot 5 . \quad \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{Si}_{2}$ requires $\mathrm{C}, 68 \cdot 1 ; \mathrm{H}, 10.7 \%$).

The ortho-, b. p. $129-130^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{d}}{ }^{25} 1.4912$ (Found: C, $68.3 ; \mathrm{H}, 10.3 \%$) and meta-isomer, b. p. $127^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.4832$ (Found: C, $68.4 ; \mathrm{H}, 10.6 \%$), were prepared analogously in 34 and 40% yield, respectively.

2-m- and 2-p-Chlorophenylethanol.--Reaction between ethylene oxide (100 ml ., 2.05 mole) and the Grignard reagent from m-bromochlorobenzene ($192 \mathrm{~g} ., 1.00 \mathrm{~mole}$) and magnesium $30 \cdot 4$., 1.25 g .-atom), followed by the usual working-up gave 2 -m-chlorophenylethanol (91 g ., 58%), b. p. $92-95^{\circ} / 1.0 \pm 0.2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5489$ (Found: C̣, $61 \cdot 7 ; \mathrm{H}, 5.75 \%$. $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{ClO}$ requires C, $61 \cdot 4 ; \mathrm{H}, 5 \cdot 75 \%$).

The para-isomer, b. p. $99 — 100^{\circ} / 1 \cdot 0 \pm 0 \cdot 1 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1 \cdot 5472$ (lit., ${ }^{9}$ b. p. $77-78^{\circ} / 0 \cdot 5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 5482$), was prepared analogously in 64% yield.

2-m- and 2-p-Chlorophenylethyl Iodide.-2-p-Chlorophenylethanol was heated with 48\% hydrobromic acid to give 2 - p-chlorophenylethyl bromide (85%), b. p. $85^{\circ} / 1 \cdot 0 \pm 0.2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25}$ 1.5690 (lit., ${ }^{9}$ b. p. $86.5^{\circ} / 1 \cdot 6 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 5697$). The meta-isomer, b. p. $107-109^{\circ} / 5.0 \pm 0.5$ $\mathrm{mm} ., n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 5680$, was prepared analogously in 86% yield.

The bromides were treated with sodium iodide in acetone, and the usual working-up and fractionation gave 2 -m-chlorophenylethyl iodide, b. p. $105-106^{\circ} / 1 \cdot 0 \pm 0 \cdot 1 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 6084$ (Found: C, 36.2; H, 3.0. $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{ClI}$ requires $\mathrm{C}, \mathbf{3 6} \cdot \mathbf{1} ; \mathrm{H}, \mathbf{3 . 0} \%$), and its para-isomer, b. p. $91-94^{\circ} / 0 \cdot 6-0.7 \mathrm{~mm}$. (lit., ${ }^{10}$ b. p. $115-117^{\circ} / 1 \mathrm{~mm}$.), $n_{\mathrm{D}}{ }^{25} 1 \cdot 6093$ (Found: C, $36 \cdot 1 ; \mathrm{H}, 3 \cdot 0 \%$).

2-x-Chlorophenylethyltrimethylsilane.-Chlorotrimethylsilane ($54 \mathrm{~g} ., 0.50 \mathrm{~mole}$) in ether (100 ml .) was added dropwise to the Grignard reagent formed from $2-p$-chlorophenylethyl iodide ($93.4 \mathrm{~g} ., 0.35 \mathrm{~mole}$) and magnesium (9.73 g ., 0.40 g .-atom) in ether (200 ml .), and the mixture was subsequently refluxed for 1 hr . The ether was then distilled off and simultaneously replaced by benzene, and the mixture was refluxed for 48 hr . more. The usual working-up and fractionation gave 2-p-chlorophenylethyltrimethylsilane (12.4 g ., 16%), b. p. $104-105^{\circ} / 5 \cdot 0 \pm 0.5$ $\mathrm{mm} ., n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 4998$ (Found: C, $62 \cdot 2 ; \mathrm{H}, 7 \cdot 8 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClSi}$ requires $\mathrm{C}, 62 \cdot 1 ; \mathrm{H}, 8 \cdot 1 \%$).

The meta-isomer, b. p. $105-106^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.4998$, was prepared analogously in 15% yield (Found: C, 62.1; H, 7.9\%).

2-m- and 2-p-Trimethylsilylphenylethyltrimethylsilane.-Reaction between 2-m-chlorophenylethyltrimethylsilane ($11.0 \mathrm{~g} ., 0.052 \mathrm{~mole}$), chlorotrimethylsilane ($6.0 \mathrm{~g} ., 0.055$ mole), and sodium ($4.0 \mathrm{~g} ., 0.15 \mathrm{~g}$.-atom) in toluene (75 ml .) gave $2-\mathrm{m}$-trimethylsilylphenylethyltrimethylsilane (7.0 g. , 53%), b. p. $113-114^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.4843$ (Found: $\mathrm{C}, 67 \cdot 2 ; \mathrm{H}, 10.0 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Si}_{2}$ requires C, $67 \cdot 1 ; \mathrm{H}, 10.5 \%$).

The para-isomer, b. p. $120-122^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.4850$ (lit., ${ }^{11}$ b. p. $110-112^{\circ} / 5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 4788$), was prepared analogously (Found: C, $67 \cdot 0 ; \mathrm{H}, 10 \cdot 4 \%$).

2-o-Chlorophenylethyltrimethylsilane.-o-Chlorostyrene ($65 \mathrm{~g} ., 0.47 \mathrm{~mole}$) was refluxed for 5 hr . with trichlorosilane (75 g ., 0.55 mole) in presence of chloroplatinic acid (2 ml . of an 0.1 m solution in isopropyl alcohol). Fractionation gave 2 -o-chlorophenylethyltrichlorosilane (98 g ., 76%), b. p. $87-89^{\circ} / 1 \cdot 0 \pm 0 \cdot 2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5281$ (Found: hydrolysable $\mathrm{Cl}, 38 \cdot 3 . \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Cl}_{4} \mathrm{Si}$ requires hydrolysable $\mathrm{Cl}, 38 \cdot 8 \%$).

[^2]The chloride (90 g ., 0.33 mole) was treated with the Grignard reagent from methyl bromide ($178 \mathrm{~g} ., 1.82 \mathrm{~mole}$) and magnesium (48.6 g ., 2.00 g .-atom) in ether, and the usual working-up and fractionation gave 2 -o-chlorophenylethyltrimethylsilane, b. p. $99-100^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 5005$ (Found: C, $62 \cdot 2 ; \mathrm{H}, 7 \cdot 8 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{ClSi}$ requires $\mathrm{C}, 62 \cdot 1 ; \mathrm{H}, 8 \cdot 1 \%$).

Trimethyl-2-o-trimethylsilylphenylethylsilane. -Treatment of 2-o-chlorophenylethyltrimethylsilane (63.3 g ., 0.25 mole) and chlorotrimethylsilane (29.7 g ., 0.28 mole) with sodium ($13.8 \mathrm{~g} ., 0.60 \mathrm{~g} .-\mathrm{atom}$) in toluene (350 ml .) gave, after fractionation, trimethyl-2-o-trimethylsilylphenylethylsilane ($27 \cdot 3 \mathrm{~g} ., 43 \%$), m. p. $117-118^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1 \cdot 4912$ (Found: C, $67 \cdot 3$; $\mathrm{H}, 10 \cdot 1 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{Si}_{2}$ requires C, $67 \cdot 1 ; \mathrm{H}, \mathbf{1 0 . 5} \%$).
m - and p -Chlorobenzyltrimethylsilane.-Reaction between chlorotrimethylsilane and the Grignard reagent from m-chlorobenzyl bromide or p-chlorobenzyl chloride in ether gave m-, b. p. $225^{\circ} / 748 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{20} 1.5099$ (lit., ${ }^{12}$ b. p. 228-229 ${ }^{\circ}, n_{\mathrm{D}}{ }^{20} 1.5108$), and p-chlorobenzyltrimethylsilane, b. p. $229^{\circ} / 755 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{20} 1.5113$ (lit., ${ }^{12}$ b. p. 231-232 ${ }^{\circ}, n_{\mathrm{D}}{ }^{12} 1.5154$).

4 -x-Chlorophenylbut-1-ene.-Allyl bromide (181.5 g ., 1.50 mole) was added dropwise to the Grignard reagent from p-chlorobenzyl chloride (204 g ., 1.25 mole) and magnesium (36.5 g ., 1.50 g .-atom) in ether (300 ml .), and the mixture was refluxed for 20 hr . Treatment with dilute acid followed by the usual working-up and fractionation gave 4 -p-chlorophenylbut-1-ene (155 g ., 74%), b. p. $92-93^{\circ} / 9-10 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.5239$ (Found: C, $72 \cdot 0 ; \mathrm{H}, 7 \cdot 0 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{Cl}$ requires C, 72.0 ; H, 6.65%).

The meta-, b. p. 93-94 $/ 10 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} \mathbf{1 . 5 2 4 0}$ (Found: C, $72.3 ; \mathrm{H}, 6.7 \%$) and ortho-isomer, b. p. $86-88^{\circ} / 10 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5253$ (Found: C, $71 \cdot 6 ; \mathrm{H}, 6 \cdot 6 \%$), were prepared analogously in 72 and 68% yield, respectively, from m-chlorobenzyl bromide and o-chlorobenzyl chloride.

Reaction of Trichlorosilane with 4-p-Chlorophenylbut-1-ene.-A mixture of trichlorosilane (135.5 g ., 1.0 mole) with chloroplatinic acid (2 ml . of an 0.1 m solution in isopropyl alcohol) was refluxed briefly, and $4-p$-chlorophenyl-but-1-ene ($143 \mathrm{~g} ., 0.86 \mathrm{~mole}$) was then added dropwise. The temperature of the mixture rose to 80° during the addition. The mixture was refluxed for 5 hr ., the excess of trichlorosilane was removed by distillation, and the residue fractionated to give 1-p-chlorophenyl-1-trichlorosilylbutane (38.6 g ., 14.8%), b. p. $122-126^{\circ} / 2.5 \pm 0.5 \mathrm{~mm}$., $n_{\text {D }}{ }^{25} 1 \cdot 5291$ (Found: hydrolysable $\mathrm{Cl}, 35 \cdot 2 . \quad \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{Si}$ requires hydrolysable $\mathrm{Cl}, 35 \cdot 4 \%$), and trichloro-4-p-chlorophenylbutylsilane ($159 \mathrm{~g} ., 61 \%$), b. p. $140-142^{\circ} / 2.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.5228$ (Found: hydrolysable $\mathrm{Cl}, \mathbf{3 5 \cdot 2 \%}$).

Under identical conditions, from 4 - m-chlorophenylbut-1-ene, were obtained 1 -m-chloro-phenyl-1-trichlorosilylbutane (29.2 g., 11%), b. p. $128-130^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5286$ (Found; hydrolysable $\mathrm{Cl}, 35 \cdot 2 \%$), and trichloro-4-m-chlorophenylbutylsilane ($\mathbf{1 6 8 \cdot 9}, 62 \%$), b. p. 129$131^{\circ} / 1 \cdot 0 \pm 0.2 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1 \cdot 5230$ (Found: hydrolysable $\mathrm{Cl}, 35 \cdot 2 \%$).

From 4 -o-chlorophenylbut-1-ene, under identical conditions, except that only 0.79 mole of the olefin was taken, was obtained trichloro-4-o-chlorophenylbutylsilane (183 g ., 76%), b. p. $119-121^{\circ} / 1 \cdot 0 \pm 0.2 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.5236$ (Found: hydrolysable $\mathrm{Cl}, 35 \cdot 2 \%$). (We think that we would have isolated some of the branched-chain isomer if it had been formed in more than 2% yield.)

4-x-Chlorophenylbutyltrimethylsilane.-Trichloro-4-o-chlorophenylbutylsilane ($168.2 \mathrm{~g} ., 0.56$ mole) was added to the Grignard reagent from methyl bromide ($207 \mathrm{~g} ., 2.18$ mole) and magnesium (54 g ., $2 \cdot 25 \mathrm{~g}$.-atom) in ether (900 ml .), and the mixture was refluxed for 16 hr . The usual working-up followed by fractionation gave 4 -o-chlorophenylbutyltrimethylsilane (100 g ., 75%), b. p. $124-126^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.4963$ (Found: C, $65 \cdot 0 ; \mathrm{H}, 8.9 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClSi}$ requires $\mathrm{C}, 64 \cdot 8 ; \mathrm{H}, 8.8 \%$).

The meta-, b. p. $128-130^{\circ} / 5.0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 4949$ (Found: C, $65 \cdot 1 ; \mathrm{H}, 9.0 \%$), and para-isomer, b. p. $113-115^{\circ} / 2.0-2.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.4957$ (Found: C, $64.6 ; \mathrm{H}, 8.8 \%$), were prepared analogously in 82% yield.

1-x-Chlorophenyl-1-trimethylsilylbutane.-Reaction (with 16 hours' refluxing) between 1 - p-chlorophenyl-1-trichlorosilylbutane ($33.5 \mathrm{~g} ., 0.11 \mathrm{~mole}$) and the Grignard reagent from methyl bromide (34.0 g ., 0.36 mole) and magnesium (9.7 g ., 0.40 g .-atom) in ether (200 ml .), followed by the usual working-up and fractionation, gave 1-p-chlorophenyl-1-trimethylsilylbutane ($18.5 \mathrm{~g} ., 69 \%$), b. p. $114-115^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.5074$ (Found: C, $64.6 ; \mathrm{H}, 8.7$. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{ClSi}$ requires C, $64 \cdot 8 ; \mathrm{H}, 8.8 \%$).

The meta-isomer, b. p. $111-112^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.5070$ (Found: C, $65.1 ; \mathrm{H}, 8.9 \%$), was prepared analogously in 85% yield.
${ }^{12}$ Eaborn and Parker, $J ., 1954,939$.

Trimethyl-4-x-trimethylsilylphenylbutylsilane.-Chlorotrimethylsilane (ca. 2 g .) was added to sodium ($19.6 \mathrm{~g} ., 0.85 \mathrm{~g}$.-atom) in refluxing toluene (400 ml .), and a mixture of 4 -o-chlorophenylbutyltrimethylsilane ($94 \mathrm{~g} ., 0.39 \mathrm{~mole}$) and the remaining chlorotrimethylsilane (total $48.6 \mathrm{~g} ., 0.45 \mathrm{~mole}$) was then added dropwise at such a rate as to maintain boiling without external heating. After the addition the mixture was refluxed for 1.5 hr ., then cooled and filtered through a sintered-glass disc, and the filtrate was fractionated to give trimethyl-4-otrimethylsilylphenylbutylsilane ($63 \mathrm{~g} ., 58 \%$), b. p. $140-142^{\circ} / 5.0 \pm 0.5 \mathrm{~mm} ., n_{\mathrm{D}}{ }^{25} 1.4897$ (Found: $\mathrm{C}, 68 \cdot 6 ; \mathrm{H}, 10 \cdot 6 . \quad \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}_{2}$ requires $\mathrm{C}, 69 \cdot 0 ; \mathrm{H}, \mathbf{1 0 . 9} \%$).

The meta-, b. p. $138-139^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 4823$ (Found: C, 68.9 ; H, $\mathbf{1 0 . 4 \%}$), and para-isomer, b. p. $144-146^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} \mathrm{l} \cdot 4837$ (Found: C, $68.9 ; \mathrm{H}, 10.6 \%$), were prepared analogously in 58% yield.

1-Tvimethylsilyl-1-x-trimethylsilylphenylbutane.-From 1-p-chlorophenyl-1-trimethylsilylbutane (15.7 g ., 0.065 mole), chlorotrimethylsilane ($8.6 \mathrm{~g} ., 0.080 \mathrm{~mole}$), and sodium (4.2 g. , 0.18 g .-atom) in toluene (75 ml .), by the method described above, was made 1 -trimethylsilyl1 -p-trinethylsilylphenylbutane ($9 \cdot 4$ g., 52%), b. p. $128-129^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm}$., $n_{\mathrm{D}}{ }^{25} 1.4921$ (Found: $\mathrm{C}, 69 \cdot 1 ; \mathrm{H}, 10 \cdot 6 . \quad \mathrm{C}_{16} \mathrm{H}_{30} \mathrm{Si}_{2}$ requires $\mathrm{C}, 69 \cdot 0 ; \mathrm{H}, 10 \cdot 9 \%$).

The meta-isomer, b. p. $119-121^{\circ} / 5 \cdot 0 \pm 0.5 \mathrm{~mm} ., n_{9}{ }^{25} 1 \cdot 4862$, was prepared similarly in 67% yield (Found: C, $68 \cdot 6 ;$ H, 10.4%).

Spectra.-Proton magnetic resonance spectra were recorded in carbon tetrachloride solutions with a Varian A60 spectrometer. A Unicam S.P. 500 spectrophotometer was used for the ultraviolet spectra.

Cleavage Rates.-The medium for the cleavages was a mixture of methanol (5 vol .) and aqueous perchloric acid (2 vol.). ${ }^{2}$ Details will be given in a separate paper.

We thank Albright and Wilson Ltd., for a maintenance grant (to K. L.), Midland Silicones Ltd., for a gift of chemicals, the Royal Society for the loan of apparatus, and Professor E. S. Lewis, of Rice University, Texas, for the nuclear magnetic resonance spectra and for helpful discussions.

[^0]: * These rates will be discussed fully in a later paper.
 ${ }^{2}$ Eaborn, J., 1956, 4858; Bott, Eaborn, Pande, and Swaddle, J., 1962, 1217.
 ${ }^{3}$ Speier, Webster, and Barnes, J. Amer. Chem. Soc., 1957, '99, 974; Smith, Ryan, and Speier, J. Org. Chem., 1962, 2', 2183.
 ${ }^{4}$ Saam and Speier, J. Amer. Chem. Soc., 1958, 80, 4104.
 ${ }^{5}$ Saam and Speier, J. Amer. Chem. Soc., 1961, 83, 1351.

[^1]: * Addition of trichlorosilane to allylbenzene in presence of chloroplatinic acid gives the compounds $\mathrm{Ph} \cdot\left[\mathrm{CH}_{2}\right]_{3} \cdot \mathrm{SiCl}_{3}$ and $\mathrm{Ph} \cdot \mathrm{CH}\left(\mathrm{SiCl}_{3}\right) \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{3} \cdot{ }^{7}$
 ${ }^{6}$ Petrov, Chernyshev, Dolgaya, Egorov, and Leites, Zhur. obshchei Khim., 1960, 30, 376.
 7 Speier and Usloff, personal communication.
 ${ }^{8}$ Baddar, El-Assal, and Doss, J., 1959, 1027.

[^2]: ${ }^{9}$ Saunders and Williams, J. Amer. Chem. Soc., 1957, r99, 3712.
 ${ }_{11}$ DePuy and Froemsdorf, J. Amer. Chem. Soc., 1957, 79, 3710.
 ${ }_{11}$ Egorov, Leites, Tolstikova, and Chernyshev, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1961, 445.

